SCIENCE APPLICATIONS INTERNATIONAL CORPORATION Organic Data Review Checklist - Standard Validation

Project:	Harley-Davidson		Page 1 of 11
SDG No:	180-42389-1	Analysis:	See attached
		Method:	See attached
Laboratory:	TestAmerica Pittsburgh	Matrix:	Water
data have been su	ackage has been reviewed and the aummarized. The general criteria use nination of the following:	analytical quality co ed to assess the an	entrol/quality assurance performance alytical integrityof the data were
	Case Narrative Analytical Holding Times Sample Preservation		
	Project Blanks		
Project Specific Q	A/QC or contract requirements may	take priority over v	alidation criteria in this procedure.
Overall Remarks	: No issues		
		. **	
			
		 -	
		-	
			
			144
Definition of Qualif	"U", not detected at the associated "UJ", not detected and associated "J", associated value estimated "R", associated value unusable or "=", compound properly identified a	value estimated analyte identity unfo and value positive	
Reviewed by:	who from	Alun G. Millan	Date: <u>4/90/1</u> 5
QA Reviewed by	: CARlie		Date: _5-(5-(5

13464

Revision 3, 6/2009, TP-DM-300-7

Page	2	of	1	1

			6
. Case Narrative			
/erify direct statements	s made within the Laboratory	Case Narrative (note discrepancies).	
Remarks:	ula issues		
	100 100 405		
			
			-
Po-analysis and		1	
	Secondary Dilutions		
	Secondary Dilutions		
Verify that re-snalysis	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-snalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-snalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-snalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-snalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-enalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-enalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-enalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-enalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine
Verify that re-enalysis appropriate results to r	and secondary dilutions were	performed and reported as necessary.	Determine

III. Holding Times

VOC - Waters - unpreserved: aromatic within 7 days, non-aromatic within 14 days of sample collection

VOC - Waters - preserved: aromatic and non-aromatic within 14 days of sample collection

VOC - Soils - preserve or analyze within 48 hours of sample collection; analyze within 14 days of preservation

SVOC, Pest., PCB - Waters - extract within 7 days of sample collection, analyze within 40 days of extraction SVOC, Pest., PCB - Soils - extract within 14 days of sample collection, analyze within 40 days of extraction

Deviations:

VOC			SVOC			Pest/PCB	
Date	Date	Date	Date	Date	Date	Date	Date
Collected	Analyzed	Collected	Extracted	Analyzed	Collected	Extracted	Analyzed
				_			
			_				
_							
						_	
						_	
							$\neg \neg \dashv$
	Date	Date Date	Date Date Date	Date Date Date		Date Date Date Date Date	Date Date Date Date Date Date

Actions:

 If notding times are exceeded, all results are qualified as estimated (J/U.	J	1)
---	------	---	----

2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)

Remarks:		Me is	5465 -		
-	<u> </u>				
			.		
		· ·			

III. Holding Times

Metals - Waters - preserved to pH<2, 180 days from sample collection

Metals - Soils - 180 days from sample collection

Mercury - Waters - preserved to pH<2, 28 days from sample collection

Mercury - Soils - 28 days from sample collection

Deviations:

		Metals				Mercury	_	
Sample #	Date Collected	Date Analyzed	Days >HT	pH Check	Date Collected	Date	Days >HT	pH Check
	00.1001.00							
				<u> </u>			_	_

Actions:

1. If preserved samples exceed holding time, qualifty all associated results as estimated (J/UJ).

- 2. If unpreserved samples exceed holding time, qualify all associated results as unusable (R).
- 3. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)
- 4. If water samples are not acidified, use professional judgement. Minimally, qualify data as estimated (J) and non-detects unusable (R).
- 5. If soil samples exceed holding time, use professional judgement to qualify data.

Remarks:	<u>NA</u>	

III. Holding Times

Sample should be preserved and analyzed according to the appropriate analytical method in general the following preservations and holding times for waters can be applied:

Sulfate, 4 degress C, 28 days

Sulfide, 4 degrees C, pH ≥9 with zinc acetate/sodium hydroxide, 7 days

Bromide/Chloride/Fluoride, no preservative required, 28 days

Nitrate/Nitrite or Ammonia, 4 degrees C, pH ≤ 2 with sulfuric acid, 28 days

Nitrate or Nitrite, 4 degrees C, 48 hours

Alkalinity, 4 degrees C, 14 days

TDS/TSS, 4degrees C, 7 days

Phosphate (total), 4 degrees C, pH < 2 with sulfuric acid, 28 days

Hexavalent Chromium, Cool 4 degress C, water- 24 hours, soil - 30 days

Deviations:

Sample #	Analyte	Date	Date	Date	Notes:
		Collected	Extracted	Analyzed	
					•
			_		
					n n
					-

Actions:

1.	If holding	times a	are	exceeded,	all	results	are	qualified	as	estimated	(J/UJ)
----	------------	---------	-----	-----------	-----	---------	-----	-----------	----	-----------	-------	---

- 2. If holding times are exceeded by more than 2X, reviewer may qualify non-detected results as unusable (R)
- 3. If samples were not properly preserved, use professional judgement to qualify the data

Remarks:	 46	
_	 	

VI. Blanks			Р	age 6 of 11
to analyze VO	Cs and SVOCs Yes	No No	el for each 12 hour period on each List documented contamination be	
Laboratory I	Method Blanks:			
Date:	Lab ID#	Fraction	Compound	Conc. (ppb)
Associated	Project Blanks (e.g.	inmont since	-tan tulu blanka ata \	
7,000014104			ates, trip blanks, etc.)	
Date	Lab ID#	Fraction	Compound	Conc. (ppb)
				Conc. (ppb)
Date			Compound	Conc. (ppb)
		Fraction	Compound	Conc. (ppb)
Date		Fraction	Compound	Conc. (ppb)

Vi. Blanks (continued)

Calculate action levels based on 10X the highest blank concentration of "common laboratory solvents", VOCs (methylene chloride, acetone, toluene, 2-butanone, cyclohexane) or SVOCs (phthalates), and 5X the highest blank concentration for all other VOC, SVOC, Pesticides, and PCB compounds. Sample weights, volumes, and dilution factors must be taken into account when applying the 5X and 10X criteria. This allows the total amount of contaminant present to be considered.

-					
De	3/1	ot.	\mathbf{a}	ne	Ħ

Maximum Conc.	Action Level (ppb)	Samples Affected
Detected, (ppb)		
		· · · · · · · · · · · · · · · · · · ·
	 	
	 	
	Detected, (ppb)	Detected, (ppb)

Actions:

- 1. If compound results exceed the action levels, the data are not qualified
- 2. If compound results are below the required reporting level, report results as non-detect (U) at the reporting level
- 3. If the compound is detected above the reporting level, but below the action level, qualify as not-detected (U)
- 4. If gross contamination exists in blanks (i.e.,, saturated peaks by GC/ MS), all affected compounds in the associated samles should be qualifed as unusable (R) due to interference.
- 5. If blanks were not analyzed per matrix per concentration level for each 12 hour period on each GC/MS system used to analyze VOCs and SVOCs use professional judgement to qualify data. Data may be rejected (R).

Remarks:	Mars					
				.		
<u> </u>						

Hold Time Summary

Sample Number	Method	Date Collected	Analysis Date	Date Extracted	Days to Analysis
180-42389-1	SW846 8260C	3/25/2015	3/27/2015		2
180-42389-2	SW846 8260C	3/25/2015	3/27/2015		2
180-42389-3	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-4	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-5	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-6	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-7	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-8	SW846 8260C	3/25/2015	3/30/2015		5
180-42389-9	SW846 8260C	3/25/2015	3/30/2015		5

Monday, April 20, 2015 Page 1 of 1

Trip Blank Detections

Sample ID Sample Analyte Result Method Units Qual

Monday, April 20, 2015

IX. Matrix Spike/Matrix Spike Duplicate Information

General MS/MSD Criteria:
percent recovery (%R)
relative percent difference (RPD

VOC	SVOC	Pest	PCB
70-130	45-135	40-140	40-140
<30	<50	<50	<50

Project	Sample(s)	Spiked:
----------------	-----------	---------

100 -	42389-	3
180	12 20 1	ノ

Deviations:

	215				
	%R	%R	RPD	RPD	
Compound		Limits		Limits	Samples Affected
+, 1, 2, 2 = 16 1 rach lan	the state of the s				•
1,1,2,9-16 trach Orachay	146				3 = 45
1,1,2 - Trichloros there	131				3 = 45
12 - Dibromoether	129				3= YJ
1,1,2-Trichlorosthere 1,2-Dibromosthere 1,1,2,2-Tetrachlorosthere	137				3=47
				-	

Actions:

- 1. If the spike recovery is above the upper control limit (UCL), qualify all positive values in the unspiked sample as estimated (J) and non-detects as estimated (UJ).
- 2. If the spike recovery is below the lower control limit (LCL), qualifty positive values as estimated (J). And non-detects as estimated (UJ).
- 3. If the spike recovery is <10%, qualify non-detect values as unusable (R)
- 4. If the RPD does not meet criteria, qualify positive values in the unspiked sample as estimated (J)
- 5. Use professional judgement to qualify additional samples in the analytical group based on MS/MSD results
- 6. Use professional judgement for qualification of data for unspiked compounds

Remarks:	 266	above	 <u> </u>

X. Laboratory Control Sample Information

General LCS Criteria	a:
percent recovery	(%R)

VOC	SVOC	Pest	PCB
80-120	60-120	50-130	50-130

Laboratory LCS	Identifications:
----------------	------------------

			4.5				
11.3	ev	19		\sim	n	œ	•
11.2	EV	ш		u		-3	-

Deviations.						
Compound	Date_	%R	Samples Affected/Qualifiers Applied			
1,1,2,2-16trach loranth	3/30/15	136	3,4,5,6,7,8,9=40			
			÷			
	-					
		<u></u>				

Actions:

Action should be based on both the number of compounds outside the criterion and the magnitude of the exceedance.

- 1. If the LCS recovery is below limits but > one- half the lower limit, qualify valves as estimated (J/UJ).
- 2. If the LCS recovery is < one-half the lower limit, qualify all data for that analyte as unusable (R).
- 3. If the LCS recovery is greater than the upper limit, qualify positive valves for that analyte as estimated (J).
- 4. If more than half the compounds in this LCS are not within recovery criteria, then qualify associated detected compounds as estimated (J).
- 5. Use professional judgement for qualification of data for compounds with no LCS information

Remarks:	-66 g 6016			